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REVIEW

Disentangling the fibrous microenvironment: designer culture models for improved 
drug discovery
Carley Orta, Wontae Leea, Nikita Kalashnikov a and Christopher Moraes a,b,c

aDepartment of Chemical Engineering, McGill University, Montreal, Canada; bDepartment of Biomedical Engineering, McGill University, Montreal, 
Canada; cRosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Canada

ABSTRACT
Introduction: Standard high-throughput screening (HTS) assays rarely identify clinically viable ‘hits’, 
likely because cells do not experience physiologically realistic culture conditions. The biophysical nature 
of the extracellular matrix has emerged as a critical driver of cell function and response and recreating 
these factors could be critically important in streamlining the drug discovery pipeline.
Areas covered: The authors review recent design strategies to understand and manipulate biophysical 
features of three-dimensional fibrous tissues. The effects of architectural parameters of the extracellular 
matrix and their resulting mechanical behaviors are deconstructed; and their individual and combined 
impact on cell behavior is examined. The authors then illustrate the potential impact of these physical 
features on designing next-generation platforms to identify drugs effective against breast cancer.
Expert opinion: Progression toward increased culture complexity must be balanced against the 
demanding technical requirements for high-throughput screening; and strategies to identify the mini-
mal set of microenvironmental parameters needed to recreate disease-relevant responses must be 
specifically tailored to the disease stage and organ system being studied. Although challenging, this can 
be achieved through integrative and multidisciplinary technologies that span microfabrication, cell 
biology, and tissue engineering.
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1. Introduction

Initially, promising hits in high-throughput screening (HTS) 
drug assays that turn out to be ‘dead-ends’ create costly 
inefficiencies in the drug development pipeline. These 
expenses must be absorbed by successful therapeutics. 
Hence, it cost an average of 648 million USD to develop 
a single new drug in 2017 [1], and these numbers are pro-
jected to continue increasing. Since 90% of drugs fail phase 
I clinical trials [2], an ability to identify dead-ends prior to 
expensive testing would significantly reduce the average 
costs of pursuing the most promising therapies.

Cells exist in extraordinarily complex environments, where 
they reside within a meshwork of supporting fibrous proteins. 
This extracellular matrix (ECM) both supports and drives cel-
lular organization into complex structures, and relays a variety 
of biochemical and biophysical signals to regulate cellular 
response. The fibrous ECM meshwork can consist of ~100 
different fibrous proteoglycans, polysaccharides, and proteins 
(the most abundant of which include Type I collagen and 
elastin), and a further ~100 ECM associated proteins such as 
soluble factors that bind to this mesh [3]. The biochemical 
complexity of the ECM plays a critical role in driving cellular 
response [4] and has been shown to affect therapeutic 
response [5]. These features have been extensively reviewed 
elsewhere [6–9]. More recently however, biophysical signals 
provided by the fibrous microenvironment have emerged as 
pivotal regulators of cell function. Changes in biophysical 

properties such as tissue architecture and mechanics are asso-
ciated with disease progression in a wide variety of diseases 
including cancer, fibrotic disease, and osteoarthritis [7,10–12], 
but the hard, flat, plastic surfaces of conventional drug screens 
do not capture this complexity. Thus, it is not surprising that 
cells do not respond to candidate therapeutics in a realistic 
manner. Developing biomimetic, disease-specific, and pre-
cisely defined environments should therefore improve the 
translational potential of these assays. For example, simply 
including protein fibers in drug screening culture models sig-
nificantly impacts observed drug efficacy [13–17]. Methods to 
recreate tissue complexity and architecture that occur at var-
ious stages of disease progression may therefore be a viable 
strategy in streamlining the drug development pipeline.

Although promising, this general approach presents two 
contrasting challenges. First, how do we decide which set of 
‘microenvironmental’ features are both necessary and suffi-
cient to produce translational results in HTS platforms? 
Second, how do we implement these features in HTS drug 
screening systems? While the idealistic design strategy 
would be to recreate the entire tissue, current technologies 
limit our capacity to replicate this immense complexity, 
particularly for HTS applications that require robustness for 
intensive scale-up. Furthermore, tissue characteristics are 
both patient- and disease-specific, making it challenging to 
determine the generalized features needed to recreate 
a target disease. Finally, the specific features within 
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a fibrous tissue that drive realistic drug responses remain 
unclear. Architectural parameters of overall cellular struc-
ture, along with fiber length, density, and organization all 
integratively contribute to mechanical characteristics such 
as bulk and localized stiffness, viscoelasticity, and plasticity 
(Figure 1). Each of these features progressively changes 
during disease evolution in a highly disease-specific manner 
[7,11]. These changes can direct diseased cell phenotypes 
[18], and in many cases, their effects on drug efficacy 
remain unclear.

Here, we review emerging strategies to isolate and manip-
ulate specific parameters in the fibrous tissue microenviron-
ment, and ultimately identify those cues important to disease 
progression and drug response. We limit the scope of this 
review to the emerging role of biophysical tissue features in 
driving cell behavior, and consider the integrated effects of 
the highly localized tissue architecture, along with arising 
micro- and macro-scale mechanical tissue characteristics 
(Figure 1). To highlight the potential for designer culture 
strategies in improving drug screening, we then provide 
a disease-specific context for these findings, by reviewing 
the impact of fibrous cues on our understanding of breast 
cancer, a disease for which improved HTS strategies are 
urgently needed. We conclude with an expert opinion on 
how these fundamental studies can contribute to developing 
the next generation of HTS platforms.

2. Deconstructing tissue architecture

The need to include three-dimensional (3D) cultures in drug 
screening has been well-established [19–22]. 3D culture pro-
vides critically important microenvironmental cues, and sup-
ports analysis of functional cell behaviors such as tissue 
branching, tissue permeability, and cell invasion [23–26], that 
would not be possible in 2D. As multiple excellent reviews 
already support the importance of 3D cultures over 2D sys-
tems [9,15,21,27,28], here we focus on specific aspects of 3D 
tissue architecture, including microstructural organization of 
the surrounding ECM network, the importance of cellular 
structures within 3D tissues, and their interrelated roles in 
driving overall tissue function. We consider these characteris-
tics in the context of dissecting and ultimately reducing the 
complexity of the environment needed for translational HTS.

Article highlights

● Biophysical features of the extracellular matrix have emerged as 
critically important regulators of cellular function, but the increased 
complexity of these systems provides considerable challenges in 
designing next-generation HTS platforms.

● Identifying a minimal set of biophysical features needed to prompt 
realistic cellular activity is essential, but is likely to be disease- and 
tissue-specific.

● Tissue architecture and mechanical behaviors are intimately linked, 
and critically important for cell function; and their individual con-
tributions can be identified using well defined in vitro culture 
technologies.

● Cellular structures, fiber microstructure and organization; and biome-
chanical parameters including tissue stiffness, viscoelasticity, and 
plasticity are more complex than originally thought, and can have 
disease-specific effects on cell-response.

● These culture models have strong potential utility in designing next 
generation breast cancer screening platforms.

● To streamline the drug development pipeline, there is a need for 
fundamental disease-specific knowledge about the key microenviron-
mental drivers of cell function to emerge in parallel with novel 
technologies to recreate these features in HTS-compatible formats.

This box summarizes key points contained in the article.

Figure 1. The cues presented by the fibrous microenvironment are widely varied. Here we consider the highly localized effects of tissue architecture on cell function, 
including features such as fiber density, spatial organization, and structural complexity. These features also influence local and bulk tissue properties including 
stiffness, viscoelasticity, and plasticity; each of which may be critically important to recreating disease-specific drug screening platforms.
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2.1. Microstructural features of the fibrous ECM

Physical characteristics of tissue ECM at the microscale include 
fiber thickness, length, density, and organization, which vary 
substantially in vivo. These microstructures vary based on 
tissue location, with fiber diameters ranging from subcellular 
(<100 nm) collagen fibrils present in basement membrane 
[29], to 500–800 nm collagen fiber bundles [30,31] in connec-
tive tissues, or larger micrometer-wide fibrils [32,33]. Increases 
in ECM density, through increases in fiber thickness and/or 
quantity, are accompanied by a corresponding reduction in 
average matrix pore size. These changes have been observed 
in several diseases, including tumor desmoplasia and fibrotic 
plaque development [11,34]. Finally, distinct degrees of fiber 
network organization and alignment are also associated with 
disease progression and cell function. Each of these features 
has emerged as a pivotal player in tissue organization and 
disease progression; and identifying their precise roles is an 
important step in determining which parameters must be 
replicated for HTS assays (Figure 1).

Architecture of the fibrous matrix can be tuned through 
a variety of biomaterial engineering strategies. For example, 
simply gelling natural collagen matrices at various tempera-
tures can tune collagen fiber bundling and increase pore size 
without drastically affecting collagen content or overall matrix 
stiffness [35]. Incorporating small molecular weight polymers 
that do not interact with cells, can change fiber lengths and 
pore sizes [36–38]. Alternatively, designing dual hydrogels 
with interpenetrating networks may be used to decouple 
fiber density from bulk mechanical properties of the matrices 
[39]. More precise control over these properties may be 
obtained by electrospinning polymers, to control fiber geome-
try, density, and adhesive patterns of a synthetic polymer 
mesh [33]. Furthermore, these defined scaffolds can then be 
incorporated within various hydrogels, producing a fiber- 
reinforced composite [33]. Overall organization of fiber mesh 
can be tuned by incorporating a moving collector plate in the 
electrospinning process to bias the alignment of fibers [40]. 
More advanced methods have also been developed, including 
incorporating magnetically activated, cell-adhesive microgel 
rods to align a fibrous mesh [41]; a composite hydrogel sys-
tem, where swelling of one hydrogel results in the uniaxial 
alignment of the second [42]; or using evaporation-mediated 
flow [43] or external vibration [44] techniques to align fibers 
during matrix gellation.

These techniques focus on specific features of the fibrous 
environment, and the results demonstrate the important role 
of 3D fibrous matrix architecture on cell function. Breast can-
cer cells in matrices of short fibers (and correspondingly small 
pore sizes) appear circular with short-lived, weak protrusions 
[36], exhibit reduced cell contractility [38], and increased oxi-
dative stress [36]. Larger pore sizes give rise to a spindle- 
shaped, mesenchymal-like phenotype [36,38]. Although 
increasing fiber density generally appears to increase cell 
spread area, cells exhibit a biphasic change in morphology, 
depending on the number of fibers locally available for con-
tact guidance [33]. Cells also generally align along fibers and 
extend protrusions in low fiber-density environments, but 
adopt a pancake-like spread morphology in high fiber- 

densities [33]. These observations suggest that there is 
a fiber length and density threshold, below which cell spread-
ing and contractility is impaired [36,38], factors which directly 
affect downstream cellular responses.

While each of these studies demonstrates significant archi-
tectural effects on a cellular behaviors, these approaches to 
modulate fiber parameters do not allow consistent and cellu-
lar-scale control of these features. Instead, cells experience 
a heterogeneous ensemble of stimuli, and read out an ensem-
ble average of cellular responses. Furthermore, these 
approaches do not allow the precision to individually tune 
each fiber parameter. For example, changes in fiber size affect 
both adhesive ligand availability and spatial distribution, 
which may affect cells through distinct mechanisms. Finally, 
emergent larger-scale mechanical properties of the matrix 
(section 3) are also prone to change with many of these 
strategies. To better understand the specific influences of 
fiber features on cells, it is helpful to design experiments 
that consider the separate roles of three-dimensional, topo-
graphical structures and adhesive patterns on cell function, 
both of which may independently affect cell response.

Fiber-like topographies alone can be recreated by molding 
linear, nano-grooved substrates such as poly(DL-lactic acid) 
(PLA) [45], optical adhesives [46], or polyurethane [47], and 
independently drive uniaxial cell alignment, contact guided 
migration, and control over morphological phenotypes such 
as cell aspect ratio. Alternatively, the spatial distribution of 
adhesive cues that accompany fiber microstructure may 
drive cell function. To study these factors, several groups 
have devised methods to pattern adhesive proteins on topo-
graphically flat and otherwise non-adhesive 2D surfaces in 
fiber-like patterns. This can be accomplished by laser-based 
removal of a non-adhesive surface [48], exposing adhesive 
sites on a blocked surface by mechanical fracture of the non- 
adhesive layer [49,50], microcontact printing [51], e-beam 
lithography [52], and electrospinning tunable fibers over 
open wells [40,53]. Micropatterns have also been created 
along three-dimensional surfaces to study the effects of indi-
vidual fiber tortuosity on cell morphology [54]. These 
approaches enable independent assessment of the role of 
fiber alignment (anisotropy), spacing (density), and contact 
area (fiber width) on cell behavior.

Collectively, these studies have demonstrated that subtle 
characteristics of the supporting fibrous ECM mesh affect 
virtually every aspect of cell function. Cell shape is a well- 
established predictor of fate, function, and proliferative state 
[55–57], and is hence of crucial importance. Cells preferentially 
align with and migrate along pathways formed in the fibrous 
mesh of ECM proteins [58], and adopt elongated cell morphol-
ogies that closely correspond to the orientation of the under-
lying matrix [48,51,54]. This characteristic is independent of 
culture platform dimensionality, and has been consistently 
observed on 1D linear arrays, on flat [48] and topographically 
complex surfaces [54], and on aligned, fully 3D matrices [42], 
given sufficient contact area and spacing between fibers is 
maintained [54]. Fibroblasts cultured on 1D linear fiber arrays, 
as compared to unaligned surfaces, exhibit uniaxial cell 
spreading, polarization, and migratory behaviors that strongly 
resemble those cultured on 3D cell-derived matrices [48,51]. 
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This behavior is independent of the ligand type and density, 
suggesting that the linear directional cue provided by the cell- 
ECM contact plays an important role in determining uniaxial 
phenotype [48].

2.2. Cellular structures within tissues

In contrast to cells constrained on flat tissue culture plates, 
cells in three-dimensions can be organized into a wide 
variety of structures that present cells with distinct cues, 
driving behavior and overall tissue function. For example, 
healthy breast epithelial cells can be induced to grow from 
single cells to form hollow, polarized spheres resembling 
native breast tissue structures when cultured in 3D- 
reconstituted basement membrane (rBM) [59,60]. Indeed, 
these structural features also direct homeostasis of healthy 
tissue and tissue degradation during disease: when formed 
into hollow, polarized spheres, healthy breast epithelial cells 
are growth-arrested and show high resistance to apoptotic 
signals compared to growth on a 2D dish [59]. In contrast, 
breast tumor cells that also begin as single cells in 3D 
matrices form a disorganized mass of aggregated cells that 
may ultimately shed cells into the surrounding matrix. These 
architectures are also cell-type specific: single fibroblasts will 
remain spaced apart in 3D matrices [33]. Each of these 
tissue structures present distinct microenvironmental cues 
to their component cells, including control over cell shape 

[55,61] and tissue curvature, which provides stress gradients 
that affect invasion and migration [25,62–64].

Recreating these tissue structures presents considerable 
challenges and opportunities for HTS platforms. Engineered 
tissues are generally achieved via three main mechanisms: 
precision assembly, guided assembly, and self-assembly 
(Figure 2). In self-assembled tissues, cells themselves direct 
their formation through processes of growth, invasion, and 
matrix remodeling, as is the case with the acinar structures 
described above, and organoid models derived from stem-cell 
precursors [65]. While tissue self-assembly is relatively straight-
forward to implement at scale, there is no control over tissue 
architecture, and cells can often form undesired structures. For 
example, placental organoids form a fused syncytial mass 
within the organoid, rather than on the surface as in human 
placental villi [66], and this may not be desirable for the 
specific screening application being developed. On the other 
end of the spectrum, precision assembly involves precisely 
positioning individual cells in pre-defined locations within an 
encapsulating matrix [67–69]. Limitations in speed of preci-
sion-assembly strategies currently prevent scale-up toward 
high-throughput drug screening, and are therefore not con-
sidered in this review.

An alternative and promising strategy is to provide cells 
with a pre-organized template that can support the formation 
of more advanced and controlled structures. For example, 
either the cells or the surrounding matrix can be pre-molded 
into a specified shape. Cells packed into these shapes are then 

Figure 2. 3D tissue engineering approaches for specific structural outcomes. (A) Precision assembly uses tools such as optical tweezers for fine cell placement within 
an overall tissue structure (Adapted with permission from [69] © The Optical Society). Pre-organizing either the (B) cells into spheroids [70], or (C) matrix into ducts 
are both examples of tissue guided assembly (reproduced with permission from [23] © John Wiley and Sons). Tissue self-assembly into structures includes (D) single- 
cell suspensions of fibroblasts, with different spread morphologies depending on the ECM suspended in (scale: 100 μm; reproduced with permission from [33] © 
(2019) American Chemical Society), or (E) multicellular spheres containing either polarized cells with a hollow lumen or solid structures depending on the ECM 
suspended in (scale: 25 μm; reproduced with permission from [71] © The Company of Biologists Ltd.).
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allowed to self-assemble to create tight junctions with fine 
control over tissue structure. Multicellular aggregates or spher-
oids can be considered to form via this guided assembly, as 
they are formed by culturing cells in close proximity to each 
other, using techniques such as the hanging drop method for 
micromass culture, aqueous two-phase system (ATPS), or 
micropocket devices [70,72,73]. Such approaches are often 
used to generate three-dimensional tumor models that may 
be applied to screening [72,74,75]. While these approaches do 
increase handling complexity (Figure 2), they provide 
a potentially scalable route for designer high-throughput stu-
dies [76]. For example, tissues with hollow lumens are required 
to understand the role of blood vessels and ducts for systemi-
cally transported drugs, and it therefore becomes important to 
capture the lumenized morphology of these tissues. Lumens 
can be engineered into three-dimensional tissues using 
a variety of strategies. A simple and accessible method to 
achieve this is to polymerize ECM around a removable rod 
made of various materials such as needles, polydimethylsilox-
ane (PDMS) [23], gelatin [24], or even a highly viscous fluid 
[22,77]. These materials are subsequently removed to leave 
a hollow tube through the matrix. Endothelial or epithelial 
cells can then be seeded into these tubes. Similarly, more 
complex templates that mimic structures such as branches 
can also be used to micromold appropriately shaped cavities, 
and many of these presented lumen-engineering strategies 
have been designed with increased throughput in mind 
[23,25,26,78,79].

In the context of HTS assays, every additional processing 
step introduces potential for reduced assay robustness and 
reproducibility. Hence, tissue engineering for HTS systems is 
akin to solving the ‘Goldilocks’ problem: how do we reduce 
culture complexity enough to manage HTS standards, while 
maintaining adequate tissue complexity to produce transla-
tional results, thereby achieving a ‘just right’ screening plat-
form. Guided assembly culture models may provide 
a realistically attainable and sufficient solution.

3. Deconstructing tissue mechanics

The mechanical properties of biological tissues arise from the 
highly local, microstructural features described in section 2, 
and these mechanics, felt at both a local and larger scale, have 
now been implicated as powerful regulators of cell functions. 
Changes in local tissue mechanics occur in a wide variety of 
diseases [80–83], and since these changes play a fundamental 
role in cell response, it is likely of critical importance to include 
these mechanical parameters in drug screening applications. 
However, tissue mechanics can be quite complex, and distinct 
mechanical features are emerging as being differently impor-
tant for various applications, making it important to identify 
the precise parameters needed to incorporate into a specific 
HTS assay.

Biological tissues exhibit elastic, viscoelastic, and plastic 
behaviors (Figure 3). Elastic properties of the material allow 
it to store energy in the form of internal stress while being 
deformed, and return to the original shape once an applied 
load is removed. In contrast, viscoelastic materials dissipate 
internal stress over time through internal reorganization, 

allowing the material to gradually flow under an applied 
load. Plasticity describes permanent deformation of 
a material, which does not return to its original shape after 
the load is removed. Although the impact of matrix stiffness 
has been established for over a decade [84,85], the importance 
of viscoelasticity and plasticity have only recently emerged 
(reviewed in [86,87]). However, manipulating these parameters 
individually can be quite challenging, and in this section, we 
review models and approaches to understand how complex 
tissue mechanics might influence cell function and drug 
response.

3.1. Elasticity

The mechanical elasticity (or stiffness) of tissues is a measure 
of how resistant the tissue is to applied deformation. Increases 
in tissue stiffness are often associated with disease progres-
sion in a wide variety of organ systems, including osteoarthri-
tis [12], liver fibrosis [88,89], and breast cancer [10,90,91], 
amongst many others. To better understand how these dis-
ease processes arise, multiple biomaterial models with tunable 
stiffness have been developed, each presenting distinct 
advantages.

The simplest and most common strategy to tune stiffness 
in biomaterials is to increase crosslinking density in the 
hydrogel network. The earliest example of this is in poly-
acrylamide, a hydrogel material in which monomer and 
crosslinker components can be adjusted to create stiffness- 
tunable 2D culture surfaces [92]. Functionalization of poly-
acrylamide surfaces with an extracellular matrix protein or 
peptide allows precise definition of the adhesive molecules 

Figure 3. Elastic, viscoelastic, and plastic behaviors arise from unique mechan-
isms during ECM stretch. Elastic materials behave like rubber bands, where 
energy from an applied force is stored in the material deformation. Hence, when 
the force is removed, the material will rapidly return to its original shape. 
Viscoelastic materials display both elastic and viscous properties, and rather 
than the stress remaining stored in the material, a time-dependent stress 
decrease occurs. Viscoelastic materials may or may not return to their original 
shape when the force is removed, depending on elastic recovery force strength 
and the mechanism of viscous dissipation. Plastic materials display permanent 
deformation following an applied force, often due to new bond formations 
which are stronger than elastic recovery forces.
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presented to cells, and this material has been broadly used 
in a variety of culture formats including within microfluidic 
channels [93], at air-liquid interfaces [94], and as a substrate 
in pseudo-3D ‘sandwich’ systems [95–97]. However, the 
harsh crosslinking reactions required for gelation limit the 
use of this material as a true 3D culture system, and similar 
tuning strategies have been developed for synthetic poly-
mers such as polyethylene glycol (PEG), which can be used 
for 3D applications [98]. These materials can also be func-
tionalized with candidate peptides and dynamically stif-
fened or softened on exposure to light by incorporating 
photosensitive crosslinkers [99,100].

An important consideration of these synthetic hydrogel 
systems is that they form with pore sizes smaller than indivi-
dual cells, creating a cage that prevents cell spreading in 3D 
[101]. Therefore, they must be engineered with cell-cleavable 
crosslinks [102] to allow cell spreading within the matrix. How 
these cleavable sites affect the local rigidity surrounding indi-
vidual cells is uncertain, and processing strategies such as gas 
foaming, freeze-thawing, and including porogens have been 
developed to tune pore size in these materials [103]. 
Alternatively, using naturally derived polymers such as gelatin 
[104–106], collagen, or hyaluronic acid [107–109] resolves 
these issues, and can be chemically modified to stiffen by 
addition of crosslinkers, or interpenetrating networks of 
other hydrogels [110–114]. However, the use of natural bio-
materials does come with a significant caveat, in that cells may 
remodel the matrix through enzymatic activity, ECM deposi-
tion, and fiber reorganization. Hence, when changes to fiber 
architecture occur, there is a corresponding change in fiber 
mechanics. For example, increased collagen fiber density and 
linear organization increase the stiffness, or stiffness aniso-
tropy of the tissue [115,116]. Synthetic, elastic matrices on 
the other hand, can be engineered to present stable mechan-
ical properties throughout the culture period [117].

The use of both synthetic and natural biomaterials do 
present some challenges in precisely decoupling stiffness 
from other variables, and cells still experience heterogeneous 
matrix properties such as porosity (and associated stiffness), 
which are not precisely controlled throughout the materials. 
The overall strategy to tune stiffness, requiring changes in 
crosslink density and material microstructure, has also gener-
ated some controversy as to which features drive cell response 
[118,119], and microfabricated analogs may provide unique 
strategies to independently manipulate adhesion and 
mechanical stiffness. For example, micropillar arrays have 
been fabricated with precise control over pillar diameter and 
pillar height, to independently tune these features [120,121]. 
To capture fiber-like phenotypes, stiffness-tunable electrospun 
biomaterials have also been developed to independently 
manipulate fiber stiffness, geometry, and network architecture 
[40,122].

The above studies generally demonstrate that stiffness 
affects a wide variety of cellular processes. On 2D hydrogel 
surfaces, stiffer materials induce cell spreading and prolifera-
tion [120], provided that adhesion sites are spaced closely 
enough to allow spreading. In contrast, increased stiffness in 
3D fibrous matrices decreases cell spread, migration, and 

proliferation [98,99,102,105–107,109,111,112,123,124]. These 
responses are likely also dependent on cell type [125,126] 
and disease context, and must therefore be carefully consid-
ered in the specific context of the HTS assay being developed.

3.2. Viscoelasticity

Viscoelasticity is a measure of internal stress dissipation (Figure 
3). Changes in viscoelastic parameters accompany diseases such 
as osteoarthritis [127–129], tissue fibrosis [130–132], and breast 
cancer [133–141], and designing biomaterials to independently 
tune and capture the effects of both viscous and elastic proper-
ties is important in identifying relevant HTS parameters.

Two general strategies exist to incorporate viscoelasticity 
into materials. First, for stiffness-tunable materials, adjusting 
the concentration of crosslinkers to monomers can put the 
material outside a linear-elastic regime, as demonstrated in 
2D cultures on polyacrylamide [142–144], gelatin [145,146] 
and PDMS [147], due to the formation of defect structures 
in the poorly connected gel networks [142], or inherent 
viscoelastic characteristics in crosslinked matrices. Since 
crosslinking must be carefully limited to produce these 
hydrogels, their fabrication and gelation often require pre-
cise control over temperature and oxygen conditions. 
Alternatively, the viscosity of the gel’s liquid phase can be 
modified with additives [148–150], without drastically affect-
ing elastic properties, while the liquid phase provides the 
dissipative element. Although technically simple, these 
methods do not allow dynamic, on-demand changes in 
material properties, which have proven useful for many 
applications [146,151,152].

Customized crosslinkers can also be used to tune viscoe-
lastic properties [153], and these approaches can be compa-
tible with 3D culture formats. Reversible bonds including ionic 
[154–156], guest-host [152,157], hydrazine/aldehyde [158,159], 
or thioester [160] crosslinks are some examples. These cross-
linkers exhibit half-lives of minutes to months, which enables 
well-defined control over stress-relaxation rates. However, 
manipulating crosslinks also effects elastic properties, making 
it quite challenging to fully de-couple elastic and viscous 
effects, without incorporating additional covalent bonds, as 
demonstrated in guest-host hyaluronic acid gels [152] and 
polyacrylamide [143,144]. Alternatively, alginate hydrogels 
can be modified with spacers grafted onto the polymer back-
bones to sterically hinder crosslinking of the alginate chains, 
with higher spacer densities and lengths both leading to faster 
stress relaxation [161]; or developed with covalent binding 
sites and calcium-activated ionic binding sites, to tune how 
much stress dissipates from the material independently of 
stiffness [162].

In general, increased stress relaxation prompts increased cell 
spreading and proliferation for fibroblast-like cells [156,160,161], 
and myoblasts [159], but decreased spreading in hepatic stellate 
cells [152] and hMSCs [151]. Once again, these responses seem 
dependent on cell type, culture dimensionality, and disease 
context, suggesting that disease-specific experiments are neces-
sary prior to designing appropriate HTS assays.
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3.3. Mechanical plasticity

While tuning viscoelasticity involves controlling the time- 
dependent properties, the degree of plastic deformation sus-
tained by a material during these energy dissipation processes 
is also emerging as a key parameter to consider in designing 
biomaterial culture platforms. In real tissues such as excised 
human breast tumor masses, plasticity is observed [163], and 
mesenchymal cells produce stresses large enough to plasti-
cally deform these biomaterials [164–166]. Plasticity in real 
materials is dependent upon applied stress, stress relaxation 
times, and mechanical stiffness [86]. Hence, deconstructing 
the specific role of plasticity in tissue response requires novel 
biomaterial designs. Alginate polymers have previously been 
crosslinked with rBM in an interpenetrating network, to tune 
mechanical plasticity. Changing the molecular weight of the 
alginate, in combination with the calcium crosslinking density 
has been shown to independently tune plasticity [163], as 
does changing the fraction of covalent crosslinks present in 
the matrix, using enzymatic crosslinking [167]. However, the 
degree to which this property is distinct from viscoelastic 
behavior is unclear, as viscoelasticity also involves crosslink 
breakage and reformation. Viscoelasticity and plasticity 
thereby have overlapping mechanisms, and local permanent 
deformation of a material arises when the elastic portion of 
the hydrogel network is insufficient to enable the return of the 
material to its original position after unloading.

4. Contributions to breast cancer research

Although the concepts of deconstructing various elements of 
the fibrous tissue microenvironment may seem academic, 
these fundamental observations of cell–environment interac-
tions suggest important design strategies for future HTS drug 
platforms. While the deconstruction techniques have been 
applied in a variety of disease models, here we briefly review 
their impact on our current understanding of breast cancer, 
a disease that affects one in eight women in North America, 
has a 15% mortality rate, and has seen no improvements in 
survival for women under 50 since 2007 [168]. Current HTS 
systems are not effective, suggesting the need for more 
advanced and realistic platforms.

3D culture of breast cancer cells has now been established 
to influence breast cancer drug screening results. Cells cul-
tured in a fibrous matrix are much less responsive to accepted 
chemotherapies than in 2D systems [17,59,169–171], and cul-
ture in 3D spheroid models confers further resistance [172], 
perhaps due to differences in proliferation and consequently 
uptake, for drugs such as paclitaxel that selectively target 
rapidly-dividing cells [173].

During cancer progression, collagen fiber density and 
crosslinking increases, matrix pore size decreases, and fiber 
linearization increases [115,116]. Increased tissue density is 
generally considered a risk factor for breast cancer disease 
progression [83], and may also further influence drug uptake 
by limiting delivery of therapeutics [174] or altering cell func-
tion. Drug dosage is an important element of any drug dis-
covery or screening study and must be considered carefully, 
further supporting the need to conduct testing in realistic 

environments. Moreover, decreased pore size confines cells 
to limit spreading and mobility, and when cultured within 
these confining 3D fibrous meshes, cells appear to compen-
sate by upregulating cell-cell adhesion genes [38] and attach-
ing to each other instead, forming multicellular tubular 
network structures [37]. Some interpret these structures as 
resembling lobules and ducts in normal breast tissue [38]; 
however, based on β1-integrin upregulation in these net-
works, others suggest this phenotype is more similar to vas-
culogenic mimicry, which is associated with poor prognosis for 
breast cancer patients. This suggests that confining architec-
ture is important during metastatic disease progression [37], 
and should be considered in HTS assays. Fiber linearization is 
also influential, as directed cell migration is observed on 
aligned 3-D matrices which enhance the migratory behavior 
of metastatic cells. This enhanced migratory behavior was lost 
on isotropic matrices and with non-metastatic lines on pre- 
aligned matrices [42].

The above architectural changes must be accompanied by 
changes in fiber mechanics. Importantly, stiffer matrices have 
been demonstrated to drive an increase in proliferation and 
invasion amongst nonmalignant cells [110], but seem to have 
the opposite effect on invasive breast cancer cell lines [111]. 
Of interest, invasive breast cancer cells may adapt to the 
surrounding mechanics. When cultured within high density, 
stiffened collagen, invasive speed is initially slowed [37] similar 
to their deceleration within synthetically stiffened environ-
ments [111]. However, following a cell cycle, the speed of 
cells greatly increases [37]. This suggests that breast cancer 
drug screening timelines should last longer than a cell cycle.

Interestingly, the dynamic stiffening of 3D matrices also 
influences drug response, and invasive breast cancer cell 
lines show greater chemoresistance within these dynamic 
cultures than cells cultured in static high-stiffness matrices 
[175], but no effect was noted on less aggressively invasive 
cell lines. These effects are not observed in 2D settings, further 
suggesting the need for disease-specific and stiffness-tunable 
3D screens. The fact that dynamic stiffening is required also 
strongly indicates that viscoelastic and plastic behaviors that 
contribute to these changes may be important to consider.

Finally, invasive breast cancer cell lines display higher inva-
sive behaviors in highly plastic matrices, such as higher cell 
spread, motility, and protrusions; even though other matrix 
properties remained the same [163,167]. Plasticity may hence 
be an important driver of breast cancer specifically.

5. Expert opinion

While the capacity to dissect the microenvironment and fun-
damentally understand cell-matrix interactions is certainly of 
academic value, we ask here whether these theoretical 
insights might allow us to bridge the gap toward practical 
gains in drug discovery. We believe that while such knowledge 
translation is both possible and highly desirable, implement-
ing these approaches for next-generation HTS in particular 
presents unique challenges and opportunities for knowledge 
acquisition, development of insight, and technological 
innovation.
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First, the technologies developed to disentangle the fibrous 
microenvironmental parameters simultaneously highlight the 
importance of these factors, as well as our relatively limited 
knowledge of their specific impact in various organ systems. 
The studies conducted to date demonstrate that common rules 
for all cell types are a myth. Precisely defined microenviron-
mental cues appear to affect cells differently. For example, 
endothelial and glioma cells seem to be largely unaffected by 
the local presence of surrounding fibers [35,39], whereas fibro-
blasts and breast cancer cells exhibit different morphologies 
and phenotypes within matrices of different densities. 
Similarly, while the role of mechanical stiffness has now been 
well established in a variety of tissues, the effects of viscoelas-
ticity and plasticity have only recently been elucidated, and 
their importance is tissue-specific and requires further investi-
gation. Moreover, whether temporary viscoelastic deformations 
are fundamentally different from permanent plastic deforma-
tion is unclear, and further fundamental studies are needed in 
tissue systems specific to the disease being screened.

Second, while these microenvironmental factors have an 
established impact, it remains unclear what the in vivo micro-
environmental conditions actually are, particularly during dis-
ease progression. For example, breast tumors have 
demonstrated both greater and lower viscous behavior than 
healthy tissue [134,135,141], and the factors that cause these 
changes remain unknown. Changes in fiber composition, den-
sity, organization, and crosslinking that lead to these viscous 
changes are largely speculative, although a few in silico and 
in vitro approaches have recently been developed to address 
this [165,176]. These differences may also arise from measure-
ments made at different length-scales, and we therefore argue 
that it is important to characterize tissue biophysics at the length 
scale of individual cells within living tissues undergoing disease 
progression. To this end, the recent development of cell-sized 
sensors that can be embedded in human tissue for long-term 
measurements of force [177–180], stiffness [181,182], and viscoe-
lasticity [183] may prove particularly valuable.

Third, while identifying the fundamental microenvironmen-
tal parameters underlying disease progression is a good first 
step, developing scalable culture systems that implement 
these specific features for HTS presents unique technological 
challenges. Running millions of assays in a typical HTS screen 
requires robustness, reproducibility, automation, and optimi-
zation of assay costs and time. In some cases, these funda-
mental studies immediately provide strategies to scale-up 
screening: for example, the use of 1D and 2D adhesive pat-
terns on substrates can prompt cells to behave as if they were 
in 3D [29,45,48,51], and this strategy can be directly applied to 
conventional HTS microscopes and data analysis workflows. 
Where fibrous 3D cultures are required, techniques must be 
developed to address difficulties in forming 3D structures with 
sufficient throughput, handling these structures during requi-
site wash steps, and 3D imaging.

Integrating microfabrication technologies with tissue engi-
neering strategies may provide valuable tools to address these 
challenges. For example, arrays of micro-reservoirs have been 
developed on-a-chip, into which nanoliter volumes of prepoly-
merized tissue may be loaded, cultured, and assayed [184,185]. 

Liquid-in-liquid patterning techniques have been developed to 
‘print’ microscale tissue volumes in existing well-plates, using 
standard robotic pipetting infrastructure [186]. Similarly, 3D bio-
printers now offer such capabilities [187]. Using 
a microfabricated hydrogel template, tissue-engineered struc-
tures such as spheroids [70] and lumenized vessels [23,25] can 
also be rapidly formed, stimulated, and analyzed without hand-
ling issues. These techniques have added advantages of using 
small volumes of cells and reagents, which reduces assay cost 
and analysis time, and may ultimately enable precision medicine 
approaches on a patient-specific level. Finally, considerably 
more advanced microfabricated platforms (organ-on-a-chip sys-
tems, recently reviewed in [188]) are being actively developed 
by multiple research groups, and may eventually be scalable for 
HTS applications.

Collectively, these challenges and innovations demonstrate 
that while umbrella solutions for HTS were initially effective in 
identifying low-hanging fruit, the development of next- 
generation therapeutics will require targeted HTS strategies cus-
tomized to mimic the microenvironment of the specific target 
disease. The diverse tissue structure in the human body, the 
variability that arises during disease progression, and the speci-
ficity of a cell’s interaction with the microenvironment, each 
suggests that disease-specific HTS approaches are needed. 
Therefore, we conclude that understanding the tissue microen-
vironment, incorporating those cues most relevant to the disease 
of interest, and developing high-throughput microfabricated 
HTS assays will be required to strip away unnecessary costs and 
complexities in the drug development pipeline, and focus plat-
forms toward identifying high-value therapeutic targets.
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